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Harmonic wavelets in vibrations and acoustics

By David E. Newland

Department of Engineering, University of Cambridge, Trumpington Street,
Cambridge CB2 1PZ, UK (den@eng.cam.ac.uk)

Four practical examples from mechanical engineering illustrate how wavelet theory
has improved procedures for the spectral analysis of transient signals. New wavelet-
based algorithms generate better time–frequency maps, which trace how the spectral
content of a signal changes with time. The methods are applicable to multi-channel
data, and time-varying cross-spectra can be computed efficiently.

Keywords: wavelet; harmonic; transient; time–frequency; cross-spectrum

1. Introduction

The author is interested in measuring and characterizing the dynamical behaviour of
materials and structures. New techniques for the interpretation of transient and inter-
mittent data, using wavelets, allow system and excitation properties to be deduced
from measured data with more precision and greater speed than before.
The applications described in this paper come from the field of mechanical engi-

neering. Four examples will be considered, three giving results that have not been
published before. They involve the analysis of transient vibration signals. The prac-
tical objective is to extract as much information as possible from measured results.
The signals may be short in duration because the phenomenon they represent hap-
pens quickly. Or their characteristics may change with time because of changes in
the signals’ underlying physical cause.
One example is the analysis of vibration data recorded during the transmission of

bending waves in a beam subjected to impact loading. This is an essentially inter-
mittent phenomenon as wave reflections occur and energy is transmitted backwards
and forwards along the beam. Another similar, but more complicated, example uses
data for pressure fluctuations recorded in an acoustic waveguide. Here there are
many different waves interfering with each other. A third example uses data for
ground vibration recorded near an underground train in London. Disturbance from
the rumble of underground trains is becoming increasingly intrusive but it is very
hard to predict. Finally, the fourth example computes time-varying cross-spectra for
multi-channel measurements of soil vibration in a centrifuge test designed to model
earthquake response. Simultaneously measured acceleration signals at different points
allow the changing soil properties that occur under dynamic loading to be explored.
The first two examples are laboratory demonstrations used as student experiments
in the author’s department. The second two examples are taken from research in
progress at Cambridge for which wavelet analysis now provides an investigative tool
of considerable importance.
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Figure 1. FFT algorithm to compute harmonic wavelet coefficients for wavelets in the
frequency band m2π � ω < n2π (for a record of unit length).

2. Harmonic wavelet theory

The theory of harmonic wavelets has been described in previous papers by the author
(Newland 1993, 1994a, b, 1998, 1999). In their simplest form, orthogonal harmonic
wavelets provide a complete set of complex exponential functions whose spectrum
is confined to adjacent (non-overlapping) bands of frequency. Their real part is an
even function which is identical with the Shannon wavelet. Their imaginary part is
a similar but odd function. Their equal spacing along the time axis is twice that of
the corresponding set of Shannon wavelets. In their practical application, the box-
car spectrum of harmonic wavelets is smoothed (to improve localization in the time
domain) and the spectra of adjacent wavelet levels are overlapped to give oversam-
pling in order to improve time–frequency map definition.
These wavelets have been found to be particularly suitable for vibration and acous-

tic analysis because their harmonic structure is similar to naturally occurring signal
structures and therefore they correlate well with experimental signals. They can also
be computed by a numerically efficient algorithm based on the fast Fourier transform
(FFT).
For time–frequency mapping, there are similarities between the harmonic wavelet

transform (HWT) and the short-time Fourier transform (STFT). The advantage of
the HWT over the STFT is that the HWT is a computationally efficient variable-
bandwidth transform. Therefore, the time–frequency map it generates can have a
variable-bandwidth basis, with the analysing wavelet’s bandwidth altered from one
frequency to another to suit the problem being studied. In contrast, a time–frequency
map constructed by the STFT always has a constant-bandwidth basis, giving the
same frequency resolution at high frequencies as it gives at low frequencies. This
means that the STFT is less flexible and may lead to a requirement for (much)
more computation than is required by the harmonic wavelet transform. A detailed
discussion of the merits of the two related methods is given in Newland (1998).
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3. Numerical algorithm

A practical algorithm for time–frequency analysis is illustrated diagrammatically in
figure 1 (Newland 1998). The correlation calculation at the heart of the wavelet
method is carried out in the frequency domain, where it becomes a multiplication
operation rather than a convolution. The input signal f(t) is represented by the
N -term series f0, f1, f2, . . . , fN−1 in the top box. It is transformed from time to
frequency by the FFT to give the Fourier coefficients F0, F1, F2, . . . , FN−1 in the
second box. The record length is assumed to be unit time, so that the sampling
interval is 1/N and the Nyquist frequency Nπ. By definition, the (complex) harmonic
wavelet has a Fourier transform Wk, k = m to n−1, which is zero everywhere except
in the range

m2π � ω < n2π, (3.1)

where m < n (Newland 1994b). Because the wavelets are complex, their Fourier
transform is one-sided, so that Wk remains zero for all negative frequencies.
On carrying out the multiplication operation, the Fk and Wk terms are multiplied

to generate the new series

Ak = FkW ∗
k , k = 0 to N − 1, (3.2)

in the next box in figure 1. These Ak are the Fourier transforms of the wavelet
coefficients. Computing their inverse (IFFT) reverts to the time domain to give the
series of wavelet coefficients ar, r = 0 to N − 1, which are shown in the bottom box.
The time-scale runs from 0 � t < 1 and ar = a(t = r/N) gives the result of

calculating the wavelet coefficient for the wavelet centred at the chosen position
t = r/N on the time axis. The usual circularity property of the discrete Fourier
transform method applies and when a wavelet runs off the end of the unit time-
scale, it wraps round and reappears at the opposite end.
The computation in figure 1 therefore gives N wavelet coefficients for reference

wavelets in all the possible N positions along the time axis. Only n − m of these are
needed to form an orthogonal set (Newland 1994b), and usually less than the (large)
number N is needed to produce adequate resolution along the time axis. This is
achieved by selecting N1 equally spaced values from the total available. If N1 is not
a factor of N , appropriate methods of interpolation can be used. An efficient method
of doing this is very important. The method used here is described in Newland
(1999).
Instead of computing the IFFT of the N -term series Ak, k = 0 to N − 1, in the

lowest but one box in figure 1, this interpolation method computes the IFFT of
a shorter N1-term series Bk, k = 0 to N1 − 1, whose first n − m terms are the
non-zero Ak, k = m to n − 1, and whose remaining terms are all zeros. It is shown
in the reference that this generates a set of coefficients bs, s = 0 to N1 − 1 that
correspond to selected terms in the longer series ar, r = 0 to N − 1, provided that
sN/N1 is an integer. If it is not, then the bs interpolate between the nearest two
values of ar. The magnitudes of corresponding terms are the same. Therefore, a
time–frequency amplitude map drawn by computing the shortened N1-term series
bs defined above will faithfully represent an amplitude map computed from the full-
length N -term series ar. The phase angles of corresponding terms will generally be
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different according to (Newland 1999)

bs = exp(−i2πms/N1)ar=sN/N1, s = 0 to N1 − 1, (3.3)

but allowance can be made for these differences.
The centre frequency of the wavelet Fourier transform in figure 1 is (m+ n)π and

its bandwidth is (n − m)2π. By changing the centre frequency, or bandwidth, or
both, and repeating the calculation, a new series of wavelet coefficients, aj , j = 0 to
N − 1, is generated. If this process is carried out for N4 different centre frequencies
and each output series aj downsampled to give N1 terms, the resulting N4 × N1
array A(N4, N1) is generated. This array is used to draw time–frequency maps to
show how the amplitude and phase of the wavelet coefficients change over time and
frequency. In the author’s programs using these principles, the parameters N1 and
N4 have the above meaning. Wavelet bandwidth is allowed to change linearly from
n − m = N2 to n − m = N3 over the full frequency range of the calculation.
The algorithm in figure 1 applies for all harmonic wavelets, namely wavelets defined

in the frequency domain with a compact spectrum such that W (ω) = 0 outside a
defined (generally narrow) band of frequencies. This no longer defines an orthogo-
nal family of wavelets, but since reconstruction of the signal being analysed is not
required, that does not matter. For the results given below, the boxcar spectrum of
orthogonal harmonic wavelets has been windowed by a Hanning function, so that
the function in the third box in figure 1 is given by

Wk =
1

2π(n − m)

(
1 − cos

2π(k − m)
n − m

)
, m � k < n. (3.4)

This has been found to give good localization in the time domain.

4. Phase interpretation

This calculation procedure generates complex wavelet coefficients, ar (figure 1). Their
phase depends on the relative position of the signal and its analysing wavelet. This
defines the ratio of the imaginary part of ar (correlation with the odd part of the
harmonic wavelet) to that of the real part of ar (correlation with the even harmonic
wavelet). When, for a constant harmonic signal, the wavelet is moved to a new
position, its phase will be different. Therefore, absolute phase is not a useful indicator
because it depends on wavelet location. But phase gradient, defined as the rate of
change of phase with time for wavelets in the same frequency band, is an interesting
parameter because it is constant when f(t) is a harmonic of fixed frequency and
phase. It is shown in Newland (1999) that, for a single harmonic of frequency ω0,
the phase gradient

∂φ

∂t
= ω0 − Ω + πB, Ω − πB � ω0 < Ω + πB, (4.1)

where Ω is the centre frequency and 2πB the bandwidth of the analysing wavelets.
The essential property is that the rate of change of phase with time is constant

for a harmonic of fixed frequency and phase so that a two-dimensional map of phase
gradient, with ∂φ/∂t on a frequency–time base, is sensitive to phase changes in the
signal being analysed. This will be illustrated in one of the examples of wave prop-
agation given below, for which sudden changes in phase gradient occur in between
successive reflections of energy in local frequency bands.
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A different example in which absolute phase can be used helpfully is the last exam-
ple in § 11, which is the analysis of simultaneous multi-channel recordings of ground
movement after shock loading. Corresponding time records are analysed by the same
wavelet arrays, with the wavelets in the same time location for the different channels.
This enables differences in the phase of the channels to be detected and mapped as
a function of time and position. It will be shown how changes in system properties
(caused, for example, by soil slippage) can be detected by harmonic wavelet analysis
from corresponding changes in the measured phase response.

5. Bending wave transmission in a beam

The first example comes from a laboratory experiment in the Department of Engi-
neering at the University of Cambridge. The experiment illustrates bending wave
propagation in a thin steel beam. The beam is suspended on light cords with its long
axis vertical and is hit gently at one end by a soft-ended impulse hammer. This gen-
erates lateral bending waves which travel to the other (far) end of the beam, where
they are reflected and return to the point of impact, before undergoing successive
reflections until eventually they are dissipated by damping after several seconds. A
small accelerometer is mounted on the beam so as to detect lateral vibration. For
the results shown below, the accelerometer is positioned close to the first end of the
beam, near its point of impact. The beam is 7.2 m long and has a rectangular cross-
section 32.1 × 6.3 mm2. The impulse hammer had a soft tip designed so that only
low-frequency vibrations were generated (up to ca. 1 kHz). The sampling frequency
was 4096 Hz.
Because the group velocity of bending waves depends on frequency (velocity pro-

portional to frequency1/2), groups of high frequency waves travel faster than low-
frequency waves. Therefore a time–frequency map should show more frequent reflec-
tions for high frequencies than for low frequencies. This behaviour is, of course, not
at all evident from the recorded time-domain response, which is shown for one sec-
ond duration in the top view in figure 2, or from the spectrum which is drawn at
the left-hand side of figure 2 with the frequency scale running from 0 to 750 Hz,
approximately. A short length of this signal has been included in Newland (1998),
but the full record has not been considered previously.
The map in figure 2 is a contour map of the three-dimensional surface obtained

by plotting the magnitude of the wavelet coefficients against time and frequency. To
plot the diagram, the bandwidth of the harmonic wavelets has to be chosen and, in
the example given, bandwidth is changed in proportion to centre frequency. That
chosen is indicated on the map by the small rectangular ‘tile’ in the top and bottom
right corners. The height of this tile shows the bandwidth B Hz of the analysing
wavelet at that frequency; the width of the tile shows the (mean-square) width of
the wavelet T s, satisfying the uncertainty limit BT = 1.
As time passes, the regular pattern of curved ridges in figure 2 is interrupted

by some transverse ‘valleys’ that run from left to right in the figure. These appear
to be caused by non-bending modes into which vibrational energy ‘leaks’ as the
wave propagation process continues. Within the frequency range of figure 2, there
are about 50 bending modes which are excited. There are also about nine twisting
modes and two longitudinal modes whose frequencies lie in range. Some of these
may be unintentionally excited by the impulsive input being slightly away from the
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Figure 2. Amplitude time–frequency map for the bending vibration of a thin steel beam subjected
to impact loading at one end. The acceleration response is measured close to the point of impact.
Top view, time history; left, spectrum; right, density scale for wavelet amplitude (all arbitrary
units).

geometrical centre of the beam or slightly off-line in direction, or they may be coupled
to the bending modes, for example by the action of the supporting elastic cords or
the mass loading of the accelerometer.
When a harmonic wavelet with a narrower bandwidth is used for the analysis,

reduced definition along the time axis is achieved; for a harmonic wavelet with a
wider bandwidth, reduced definition along the frequency axis is obtained (specific
examples are given in Newland (1998)). The ‘optimum’ is determined by trial and
error, guided by the shape of the uncertainty tile.
The unavoidable smearing of spectral features that occurs in figure 2 can be

reduced by plotting only the ridges of the three-dimensional surface whose contours
generate the figure. The exact identification of ridges is difficult (Eberly 1996) and
identifying their precise position is complicated. The approach used by the author
(Newland 1999) is to seek the height maxima of sections cut in the direction of the
(smoothed) surface’s greatest curvature. When this strategy is applied to the surface
plotted in figure 2, the result is that shown in figure 3. Each ridge marks the arrival
at the measurement point of successive groups of bending waves. At high frequen-
cies the group velocity is higher, so successive reflections arrive more quickly than
at low frequencies, when the ridges are further apart. Knowing the length of the
beam, by measuring the time between successive reflections, the group velocity can
be estimated as a function of frequency.
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Figure 3. Ridges of the amplitude time–frequency map in figure 2.

6. Response of an acoustic waveguide

A similar, but more complicated, example is provided by the reflection of pressure
waves within an acoustic waveguide. This is also a laboratory experiment at Cam-
bridge. Internal air pressure perturbations are generated in a closed circular duct of
approximately 12 m length and 0.75 m diameter. These perturbations are caused by
a pulse-like electrical input to a small loudspeaker mounted near the edge of one of
the rigid ends of the duct. This excites several different families of acoustic waves,
which travel backwards and forwards within the duct. A microphone mounted at the
centre of the end with the loudspeaker records the resulting pressure fluctuations
and this signal has been used to generate the diagrams in figures 4 and 5.
Figure 4 shows the ridges of an amplitude time–frequency map, computed as

described above. In addition to the main ridges, there are numerous small, gen-
erally horizontal ridges which arise from local fluctuations in surface height. They
can be eliminated by introducing more smoothing before ridge detection and it is
a matter of judgement to generate the ridge map which is the ‘best’ for a required
purpose. As for figure 3, figure 4 has the input time history shown for comparison
along the top, and the modulus of this signal’s Fourier transform plotted along the
left-hand side (using arbitrary units). For convenient scaling, the square root of the
Fourier transform is plotted.
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Figure 4. Time–frequency ridge map of acoustic reflections in a closed duct: comparison of
theory and experiment (from Newland 1999).

The underlying physical processes represented in this map are quite complicated.
Axial, plane waves travel at constant velocity (independent of frequency) and bursts
of energy from these plane waves arrive periodically at the microphone. They show
as equally spaced vertical lines in figure 4. Knowing the dimensions of the duct and
the acoustic properties of air, the position of these lines can be calculated and their
theoretical position is superimposed on their experimental position in figure 4. Within
the frequency range of these maps there are two other families of non-axial waves
which are dispersive (their group velocity depends on frequency). Their passage time
between reflections is given by

T (ω) =
2L

c
√
1 − Ω2

0/ω2
, (6.1)

where L = 12.16 m is the length of the duct, c = 334 m s−1 is the speed of sound,
ω is the wave frequency, and Ω0 is the cut-off frequency. For plane waves, the cut-
off frequency is zero, and for the first two families of non-axial waves which are
detected by a microphone at the centre of the duct it is Ω0 = 3.83c/a and 7.02c/a,
where a = 0.386 m is the duct’s radius (see, for example, Skudrzyk 1971, p. 431).
These results have been used to plot the theoretical lines on figure 4, measuring time
forward in steps of T (ω) from the instant of impulsive excitation.
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Figure 5. Time–frequency differential phase map corresponding to figure 4
(from Newland 1999).

The calculated cut-off frequencies are plotted as the horizontal lines in figure 4.
Successive reflections of the dispersive waves appear as the two families of curved
lines that are asymptotic to the cut-off lines. The horizontal ridge at ca. 200 Hz is due
to ringing of the loudspeaker’s diaphragm and is not associated with the travelling
wave acoustic phenomena.
Figure 5 shows a differential phase map of the same data. It is a contour plot of

the three-dimensional surface obtained by plotting the modulus of phase gradient
on a base of frequency versus time. It can be seen that phase perturbations occur
generally between ridge positions indicating phase changes at every reflection of
the travelling wave energy. A characteristic of this presentation is that the vertical
distribution (distribution over frequency) of the phase perturbations is correlated
with the position of the peaks in the Fourier transform of the input signal (plotted
along the left-hand side). By placing a straight edge across a similar diagram drawn to
larger scale, it can be shown that the phase perturbations align quite closely with the
positions of the troughs in the spectral data plotted on the left-hand side (Newland
1999). This is not evident so clearly in corresponding graphs of wavelet amplitude.

7. Underground train vibration

The transmission and attenuation of ground-borne vibration is an extremely difficult
computational problem because of the geometric complexity of ground and building
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Figure 6. Time–frequency analysis of the recorded ground acceleration during the passage of a
train on a nearby underground railway line.

structures and because of lack of understanding of the dynamic response properties
of soils and foundations (Newland & Hunt 1991, 1992, 1996). For example, for the
new Folkestone to London high-speed railway line, there are currently no agreed
protocols to compute groundside vibration or the level of anticipated disturbance in
local buildings, old or new. This is a serious, and currently unsolved, design problem.
Recently, ground acceleration data have been measured near to a curved section of

the Piccadilly underground line in London. For the results given here, an accelerom-
eter was secured to a stone step in an adjacent building and 20 s of the passage of
a train recorded. The time history of this process is shown in the upper view in
figure 6, the units being gs. The recording begins with the train already passing, and
continues until it has passed out of hearing in 20 s.
Figure 6 shows a harmonic wavelet amplitude map for this vibration, covering the

frequency range from 0 to 250 Hz (half the Nyquist frequency of 500 Hz). It is evident
that there is a broadband response as the train passes, with ground vibrational energy
in a wide range of frequencies as a result of wheel and rail surface irregularities, wheel
flange-to-rail contact, mechanical train noise and electrical collector noise.
Examination of the higher-frequency content of the recorded signal for the first 5 s

of the data (figure 7) shows a marked local variation in vibrational intensity. This
is apparent from the mean-square graph plotted in figure 8 (bottom), which is the
energy represented by the appropriate summation of wavelet amplitudes squared, for

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Harmonic wavelets in vibrations and acoustics 2617

450

400

350

fr
eq

ue
nc

y 
(H

z)

300

250
10.5 1.5 2 2.5 3.53 5

time (s) 
4 4.5

Figure 7. Analysis of part of the same data as in figure 6, with segmentation markers to
identify locally high-amplitude response.

the frequency band of figure 7 (only). Above it in figure 8, the amplitude discrimi-
nator d(j) is plotted, where j = 1 to 300 is the index of columns in figure 7. This
function is a measure of the amplitude difference of all the wavelet coefficients (in
the frequency band considered) between one column of the array plotted in figure 7
and the immediately adjacent column (Tait & Findlay 1996; Newland 1998). The
segmentation markers in figures 7 and 8 are chosen to coincide with local peaks in
d(j) and provide a means of identifying the extent of the mean-square peaks in the
bottom view in figure 8. These local peaks of high-intensity vibration appear to result
from intermittent impact between wheels and rails. It can be seen from the top view
in figure 8 that there is a degree of arbitrariness in the selection of the appropriate
peaks of the amplitude discriminator d(j) which denote a sudden change in vibra-
tional spectral content. The likely explanation is that the onset and termination of
the wheel flange to rail interaction process is variable and that the response to this
process is confused by the vibration generated by other sources, in particular by rail
joints and irregularities.

8. Geotechnical centrifuge testing

Fundamental knowledge of the (large amplitude) dynamic behaviour of soil under
earthquake excitation is meagre. Studies at Cambridge in our Geotechnical Cen-

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


2618 D. E. Newland

4 × 10 5–

3 × 10 5–

2 × 10 5–

1 × 10

0

5–

3 × 10 4–

2 × 10 4–

1 × 10

0
50 100 150 200

position index   j)(
250 300

4–

Figure 8. Bottom: mean-square response for the frequency band shown in figure 7. Top: ampli-
tude discriminator d(j) =

∑
k(|a(k, j)| − |a(k, j − 1)|)2, where a(k, j) is an element in the

two-dimensional array plotted in figure 7. The index j runs from 1 to 300 because the map in
figure 7 is plotted from an array which has 300 columns.

trifuge Centre and elsewhere (Lee & Schofield 1988; Taylor 1995; Butler 1999; and
others) have obtained good data on the transient vibration of soil models under
earthquake conditions. The levels of excitation cause large deflection intergranular
movements which lead to so-called soil liquefaction effects when the soil’s response
is closer to that of a fluid than a solid. Because excitation lasts only for a second
or two with excitation frequencies ranging up to ca. 200 Hz, data analysis can only
be done if there are good methods of transient vibration analysis. Wavelet meth-
ods make this possible and good preliminary results have already been achieved
using harmonic wavelets (Newland & Butler 1998). New research is concentrating on
developing these methods to estimate time-varying cross-spectra between adjacent
measuring points. This is seen as a very important area of further theoretical and
experimental research.

9. Experimental data

The test data used below are those published in Newland & Butler (1998) and were
obtained from geotechnical centrifuge tests. The experimental system represented a
saturated sand model poured at two relative densities and mounted within a flexible
container. The container is shown in figure 9. It is rectangular in shape with its side
walls made of a series of flat rings, each mounted to the next by a rubber gasket.
The intention is that the loaded container functions as an equivalent shear beam,
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Figure 9. Instrumentation layout. All accelerometers have their sensitive axis in the x-direction
(Newland & Butler 1998).

whose shear modulus matches approximately that of the enclosed soil medium. Sand
was poured at a density of 1576 kg m−3 in the lower 160 mm of the container and at
1670 kg m−3 for the remaining 365 mm to the top of the container.
The container and its contents were centrifuged to apply an acceleration vertically

downwards (in figure 9) of 50g in order to simulate the response of a large ground
volume in a small model. Horizontal shear excitation to the base of the container
was supplied by a device called a stored angular momentum actuator. This consists
of a flywheel which is connected to a reciprocating rack by a clutch assembly. When
the clutch is engaged, there is a sudden burst of oscillatory energy which shakes the
container and its contents while this is being centrifuged.
Sand movement was detected by miniature piezoelectric accelerometers. As seen

in figure 9, these were stacked vertically within the test specimen with four in the
bottom layer of sand and ten in the top layer. Previous tests have shown that they
have an accuracy of ±5% within the frequency range 20 Hz to 2 kHz. Their natural
frequency when embedded in sand is estimated to be ca. 4 kHz compared with fre-
quencies of interest up to ca. 400 Hz. Each transducer was carefully orientated in the
sand to record the resulting horizontal motion (the x-direction in figure 9) within
the saturated model.
Data were stored in a digital data-acquisition system developed in Cambridge as

part of the centrifuge’s instrumentation, from which they are retrieved for detailed
computer analysis. The input motion to the base of the model container had a
fundamental frequency of 27 Hz with a displacement amplitude of ±1.5 mm. The
duration of the shaking excitation was set to 1.2 s.
For purely harmonic movement, these displacements correspond to a lateral accel-

eration amplitude of ca. 4.4g. However, loose-play and nonlinearities in the mecha-
nism introduce a harmonic content to the excitation, as will be apparent from the
measured results below. The measurement points are shown in figure 9. The signals
f1 to f6 were recorded at the following six locations: f1 at 7726, f2 at 7828, f3 at
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Figure 10. Experimental data: power spectral density for signal f1 measured at position 7726
(see figure 9).

7319, f4 at 7709, f5 at 12 611 and f6 at 12 612, but only two of these measurements,
f1 and f4, are used for the results given below.

10. Power spectral densities

All signal processing computations have been done by the harmonic wavelet method
using the algorithm described above. Results are shown as before as two-dimensional
maps of three-dimensional surfaces plotted for the relevant parameter. For ease of
identification for a multi-channel system, it is convenient to refer to (i) the power
spectral density of a measurement, (ii) the amplitude of the cross-spectral density
between two measurements, and (iii) the phase of the cross-spectral density. These
terms are not strictly correct because they are defined for stationary random pro-
cesses, whereas we are concerned with transient and non-stationary processes. How-
ever, the amplitude squared of the wavelet coefficient is called a power spectral den-
sity since, for an orthogonal set of harmonic wavelets, the mean-square signal is equal
to the sum of the (weighted) wavelet amplitudes squared (see, for example, Newland
1993). When the signal is oversampled to generate extra wavelet coefficients, the
same analogy may be used. Similarly, the product of two wavelet amplitudes, when
computed for the same wavelet at the same instant of time for two signals, repre-
sents the amplitude of the cross-spectral density between these signals (for that time
instant and frequency band). Also the phase difference between the same two wavelet
coefficients gives the phase of the cross-spectral density between these signals.
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Figure 11. Experimental data: power spectral density for signal f4 measured at position 7709
(see figure 9).

Time-varying auto-spectral densities calculated this way are plotted for records f1
and f4 (positions 7726 and 7709 in figure 9) in figures 10 and 11.
The forced displacement excitation of the base of the model consists of the fun-

damental component at ca. 27 Hz with unavoidable superimposed harmonics of all
orders. These can be seen in figure 10. The time history f1 is plotted along the top of
the map and its power spectral density (also referred to as the auto-spectral density)
is plotted along the left-hand side.
The amplitude map in figure 10 shows that the vibration close to the bottom of

the box remains approximately constant as shaking continues because the horizontal
stripes have approximately constant width and continue for the full duration of the
shaking process. In contrast, all the other power spectral densities, for example f4
in figure 11, show obvious changes with time. This must be due to the changing
physical properties of the soil model as a result of its changing dynamic properties
with time.

11. Cross-spectral densities

Power spectral density data indicate the total energy in a signal and its distribution
over frequency and time. Relative changes in two signals are described by the cross-
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Figure 12. Experimental data: phase of cross-spectral density for signals f4 and f1

(measured at positions 7709 and 7726, see figure 9).

spectral density. This provides a measure of the local correlation between two signals.
The cross-spectral density’s amplitude is measured by the product of the wavelet
amplitudes of both signals; its phase is measured by the wavelets’ relative phase. As
for all time–frequency analysis, all spectral calculations are estimates for the chosen
frequency band and time window considered. For the harmonic wavelet method, this
is defined by the bandwidth and time duration of the chosen wavelet, which is under
the control of the investigator and is indicated by the shape of the rectangular ‘tile’
shown in the top right and lower right corners of the maps (vertical height equals
the bandwidth, horizontal width equals the time duration).
For the experimental data, figure 12 shows the phase of the time-varying cross-

spectral density for f4 with f1 These results have not been published before, and
some explanation of their interpretation is needed. The density legend is shown on
the right-hand side of figure 12. It runs from π = 180◦ at one extreme to −π = −180◦

at the other extreme. Before the forced motion has been applied, and after it has
finished, there are residual noise signals and these give rise to the haphazard phase
represented by ‘marbling’ on the right- and left-hand sides of the map. During the
forced motion, the map has obvious horizontal stripes, each corresponding to one
harmonic of the motion (identified on the left-hand side spectrum, which is for f1).
Around the fundamental frequency of 27 Hz, the density of the stripe indicates that
f4 and f1 are approximately in phase with each other. The same is true for the
second harmonic initially, but as motion continues there is a phase change from
approximately zero through minus 90◦ and then through −180◦ to approach zero
again. For higher harmonics, the density of each stripe changes as time passes, with
the transition sometimes being quite sudden.
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Figure 13. Simulated data: phase of cross-spectral density for signals f2 and f1 (at the middle
and bottom of the model).

In between each horizontal stripe there is a thinner marbled stripe where there is
uncorrelated response between two harmonics and phase coherence is not maintained.

12. Simulated results

For comparison with the experimental results, the behaviour of a linear model has
been simulated. This model consists of a box in three horizontal sections (identified
as 1:bottom, 2:middle and 3:top) with parameters chosen to give natural frequencies
and damping ratios of 12 Hz, 0.13 and 31.5 Hz, 0.33. The fundamental frequency
of the displacement excitation was set at 25 Hz and there are harmonics up to the
8th (200 Hz) included. The acceleration response of the model has been computed
by numerically integrating the equations of motion (with the system’s parameters
constant). To model the experimental system, the deterministic response was sup-
plemented by a low-amplitude random signal to represent noise.
Figure 13 is the phase of the cross-spectral density between f2 and f1 for the

model (middle and bottom). The random noise causes the ‘marbling’ and the slight
variations in colour density along each horizontal stripe. However, it can be seen
from figure 13 that the cross-spectral phases remain approximately constant for each
harmonic during the shaking phase.
By comparing figures 12 and 13, it is clear that significant phase changes occur

during the duration of shaking in the experimental case (figure 12), which are not
duplicated in the simulated comparison (figure 13).
By introducing time-varying parameters into a linear model, it is possible that

the experimental results could be simulated. However gradual, progressive changes
in parameters would not account for the observed behaviour. It is more likely that
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nonlinear effects caused by sudden slippages, or liquefaction, or, as a result, abrupt
contacts with the side walls of the model container may account for the observed
behaviour. To properly simulate these effects is a challenging task!

The laboratory experiments which generated the beam bending and acoustic duct data were
devised by my colleague Dr Jim Woodhouse. I am grateful to him for making the data avail-
able for analysis and for numerous discussions about the results. Dr Woodhouse and two of
his colleagues first applied time–frequency analysis to similar problems some years ago, using
the short-time Fourier transform method (Hodges et al . 1985). Dr Hugh Hunt has worked with
me on problems of ground vibration transmission and I thank him for providing the measured
underground train data included above. We hope that analysis of this and similar data will lead
eventually to better means of alleviating traffic noise problems. The work of my colleague, Pro-
fessor Andrew Schofield, who was responsible for the design and development of the Cambridge
geotechnical centrifuge and its derivatives elsewhere in the world, is well known to foundation
engineers (Schofield 1980; Schofield & Steedman 1988). I am grateful to Professor Schofield and
his PhD student, Gary Butler, for providing the centrifuge data for which the wavelet analysis
method has been able to illuminate transient dynamic behaviour in a way that had not previ-
ously been possible. Only some illustrative results are given above from the extensive data that
are now being analysed by those working in this field.
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